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Continued fraction solution for the radiative transfer equation in three dimensions
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Starting from the radiative transfer equation, we obtain an analytical solution for both the free propagator
along one of the axes and an arbitrary phase function in the Fourier-Laplace domain. We also find the effective
absorption parameter, which turns out to be very different from the one provided by the diffusion approxima-
tion. We finally present an analytical approximation procedure and obtain a differential equation that accurately
reproduces the transport process. We test our approximations by means of simulations that use the Henyey-
Greenstein phase function with very satisfactory results.

PACS numbd(s): 05.40—a, 05.60—k, 66.90+r

[. INTRODUCTION None of the above approximations are completely satis-
factory, and the most complete account of transport for the
Diffusion theory is perhaps the most employed approxi-problem at hand is provided only by the solution of the trans-
mation scheme for photon migration in multiply scatteringport equation, which, in the case of light propagation through
media because its simplicity goes along with effectivity in harrow slabs, is the so-called radiative transfer equdter
many applicationg1-4]. There are, of course, situations below. Nevertheless, to our knowledge, there are no general
where diffusion theory does not provide useful approxima-analytical solutions other than numerical ones for transport
tions and simply does not work. One of these cases is that gfquations, and this makes fitting experimental data to theory
transport in either small systems or through strong absorbingifficult and impractical. Herein we obtain an analytical so-
media. In other words, diffusion theory will not provide cor- lution, for the free propagator along one axis and for any
rect approximations when the photon mean lifetime insidg?hase function, of the radiative transfer equation in the
the medium is small compared to the so-called isotropizatiofrourier-Laplace domain. We also present an approximation
time [5,6], since in such a case photons do not experiencécheme, based on continued fractions, which gives very good
enough collisions for the diffusion approximation to apply results when tested against simulation results.
[4]. This is certainly the case of transport through thin slabs,

the usual geometry encountered in many biological experi- Il. MATHEMATICAL FRAMEWORK
ments such as skin measurements and nondestructive tests
[2]. The starting point of our analysis is the radiative transfer

One of the reasons for the failure of diffusion theory in equation(RTE) that defines the motion of a photon through a
thin slabs is that it does not take into account the ballisticdisordered mediurfil,7,10. The photon moves through the
properties of photon movements and the effect of anisotropignedium at finite velocityc and suffers scattering according
scattering. Several approaches have been developed to ovée-a Poisson law at ratg; that is, the time between two
come these difficulties; among them we single out the telegconsecutive scattering events is a random variable with prob-
rapher's equation approach first proposed by Ishinfaiu  ability density
some years ago and recently improved by Durian and Rud-
nick by means of aad hoctelegrapher’s equation adapted to P(t)= e As
the problen{8]. Another approach, proposed by Gandjbakh-

che, Bonner, and Nossg8, 6], exploits the random-walk im-  These scattering events are defined by a phase function
age of multiple light scattering with properly scaled param- (Q|Q') that takes into account the probability of a given
eters, so as to take anisotropy into account. We have recently;nsition between two directions of propagatiél, and Q.
addressed the problem as well and proposed a model basgghreover, we will assume that the phase function is only a
on a three-dimensional generalization of the persistent ranynction of the relative angle between the directions before
dom walk[9]. This model assumes that photons move alongyng after the collision. This is not a strong assumption as
directions that are parallel to the axes, which allows takmqOng as no drift is acting on the system, as is the case of

_ballistic motion effects and strongl_y anisotr_op_ic_scatt_eringphoton propagation in homogeneous media. This implies that
into account. However, the model is unrealistic in spite ofi,q phase function takes the simpler form

allowing us to exactly solve the problem of multiple-
scattering migration in a thin slab.

1
BOIQ)=5-B(0),
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to find the photon at the position=(x,y,z) moving in the
direction at timet. The radiative transfer equation for this Mslz > BiPim(Z,) Vim(Q),
density is[10] —om=-

where p;,(z,t) are the coefficients in the expansion of

WJ&Q-Vp(r,ﬂ,t)+,usp(r,ﬂ,t) p(z,Q,t) in terms of spherical harmonics, i.e.,
:MsJ E(Q|Q’)p(r,ﬂ',t)dﬂ' (1) plm(zvt):f p(Z!QII)J/I*m(Q)dQ (5)

. L . . Collecting all of the above and taking the joint Fourier-
One of the most important applications of this equatlonLa lace transform of Eq(1), we get
corresponds to the problem of transport through slabs. In this P e 9

case, because of the symmetry of the problem, the only rel- 1520

evant direction is one perpendicular to the slab, say,zthe 2 A\ /—,3?340(9)
axis. Having this in mind, we will solve the problem for the =0 am
marginal probability densitp(z,t). In consequence, we will

replace the operatd2- V in Eq. (1) by coséd/dz and use the o -
initial condition :Z'o mzfl [s+ us(1= B IPim(@,5) Vim(£2)
P(z,2,t=0)=Bo(2)8(2), ) L
+ijIZO ZI Pim(@,5)COSOY (), (6)

which corresponds to a photon starting its movement from

the origin att=0 with direction distributed according to

some functionBy(€2). Moreover, we will assume that pho- Where
tons start moving with cylindrical symmetry with respect to " "
thez axis; that is,8o(€2) is only a function of the polar angle E,lm(w,s):j dze*inf dte Stp,,(z,t)
with respect to the axis. The problem given by Eqggl) and —w 0

(2) contains all the information we need, and obtaining its, o ) .
solution is the main objective of this paper. is the joint Fourier-Laplace transform of the coefficients de-

fined in EqQ.(5). The quantities;8|0 are defined as in Eq4)
but with the initial angle distributionB,(€2) instead of

) . B(Q). Using the standard relation
We will now perform the angular expansion on all the

functions appearing in the RTE. In fact, this is the basic (2I+1)xP"(x)=(I+1—m)PJ", ;(x)+ (I+m)P[" ;(x),
assumption of the so-callddy approximations that are ex-
tensively used in transport thedf¥0]. Thus the phase func- we can obtain from Eq6) the following infinite set of linear

A. The angular expansion and thePy method

tion becomes equations forf,lo;
w
r_ ’ ~ iCw. 1
OO =2 2 BIn( @0 () SPo(0:9) + ~=u(09)=——, ™
(symbol * means complex conjugatevhere)),(Q) are the . . .
spherical harmonics defined as Pi-1(®,8) +op+1(w,5) = a|(@,5)p|(w,s) +p(w)
21+1 (I-my! (1=1,2,3...) wherep,(»,5)=po(®,s),
= —_— epm
I+l 21-1
P"(-) are the associated Legendre functions, gpdre the T 21+3’
coefficients of the expansion of the phase function in terms
of Legendre polynomials, i.e., i[s+us(1—B)]Val%—1
a(w,8)= col ,
ﬁ|=f B(0)P(cosh)sinodé. (4)
0 and
We easily see thaBy=1, which assures the normalization 21+1 [2I-1
condition, and pi(w)=— PRI /WBI _
B1=9g=(cos0)

Note that we are solving the problem fiqro(z,t) because we
is the anisotropic parameter widely used in the literatureare only interested in the marginal probability densiy,t),
Taking into account Eq(3), the term on the right-hand side which is related topgy(z,t) through the relationp(z,t)
of Eq. (1) becomes =\V4mpgo(z,t).
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We will solve the system of equatiofig) in two stepsi(i) Porra and Weiss some years afibl] and, in a different
we first truncate the infinite set; i.e, we assume that botltontext, by Claes and Van den Brogdi].

pi(w,s) andp,(w) vanish wher =n for certainn, and solve

the resulting finite system of equatiorig) we take the limit o

n—oo. Following this way, the final solution reads B. The moments of the distribution

Let us now obtain the moments of the distribution using

_ s+ ug(1—g) the chart_:lcteristic fu_nction E). Lc_)oking at the structure of
[+ po(1—g) ]+ C2wlFy(,5)/3 s the continued fractior9), we realize that theFi(w,s) are

analytical functions ofo and that their expansion until order

. 1
p(w,s)

. 0 S+ 018 2n coincides with the expansion of the same fraction trun-
—icoFi(w,s) Bﬁ; @rnn cated atk;,(w,s)=0 for I>n. Using this property, we can
easily write the Laplace transform of the mome(z5(s)).
| )l|+1 Fi(w.5) ® Thus, for instance, the first three moments read
X(—icw —| 1,
( =2 S+ ug(1—B) . CIB(l)
) . . (z(8))= —, (12
where Fj(w,s) are continued fractions defined as SS
Fi = . 9
j(was)_ N Kj((x),S) ( ) -~ 2C2 4C2Bg 13)
z°(s))= + ,
14 Kj+1(@,8S) (219 3s%s, 3sSS; (
1+ Kj+2(®,S)
1+---
_ . _ . 2c¢®8)  24c®B) 3683
andx,(w,s) are the following coefficients that contain all the (Z%(s))= >3 158 , (14
information about the characteristics of the scattering: §°S; 155§52 15253
k(w,S)
where, for simplicity of notation, we have defined
B (1+1)%c?w?
21+ D) (214 3)[s+ us(1=B)I[s+ us(1=Bi+1)]

(10 Sn=5+us(1-Bn),

Equations(8)—(10) are the main results of the paper and

provide us with the exact solution in the Fourier-Laplace(n=1,2,3...). From these expressions we readily see that

space of the marginal probability densptyz,t) for an arbi-  in order to obtain the moment of ordarwe need to know

trary phase function. If we assume thaf{w,s)=0 for | the nth coefficient of the expansion of the phase function.

=N, we recover the so-calleBy approximation and, from Hence any approximation trying to go further than the diffu-

this point of view, our solution is precisely tif¢, solution.  sion approximation necessarily needs at least the second-
In order to proceed further, we need to specify a phaserder properties of the phase function.

function for the problem at hand. The simplest choice is that

of the isotropic scattering. In such a case, all coefficients of

the phase function vanish; that i§,=0(1=1,2,...) and C. The differential equation

(1+1)2c20? In spite of ha}ving the exact expression, in terms of the
= _ continuous fractions and the Fourier-Laplace domain, of the
(214+ 1) (21 +3)(s+ ue)? marginal probability density, it turns out to be quite useful to

obtain the differential equation f@r(z,t) because the knowl-
Moreover, if we suppose isotropic initial conditions, thenedge of this equation will allow us to get suitable approxi-
solution (8) becomes mate expressions of the distribution. Note first that, as men-
tioned above, the continued fractions of E8). are analytical

Kk (w,S)

arctar{ co functions ofw that can be expanded in the form
~ S+ ug
p(w,s)= o T (17 i -0 ,
- Fi(ow,5)=1+ 2, f)(s)e™, 15
Cw ,usarctarE S+Ms) j(@,9) 2 fn (s)w (15

where we have used the expression of the function asgtan(

in terms of a continued fractio[r13]. In this case, due to the \vhere the coeﬁicient@%)(s) can be obtained by expanding
spherical symmetry of the solution, we can replacevith 6 aquivalent truncated fractidie., with «;=0 for I>n)

w=\Joy+oy+e; and get the three-dimensional density jn powers ofw. Substituting Eq(15) into Eq.(8) and invert-
p(w,s). This is precisely the solution obtained by Masoliver, ing the joint Fourier-Laplace transform we get
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3°p(z,t) L ap(z,t) 15 ' ' '
o ps(1=9)—
) . 10
1 9%p(z,t) 1
— 2 2 n
=zC———+5¢C -1
3¢ T3¢
5 -
t #**p(z,7)
Xfofn(t—T)WdT'f'g(Z,t), .
(16 .
wheref,(t)=f)(t). The inhomogeneous terg(z,t) con-
tains the information about the second-order properties of the 44 L
initial conditions; that is, it contains the coefficierg§ with =
|=2. Therefore our problem is equivalent to the one posed =
by Eq. (16) along with the initial conditions & 5r
S
ap(zt) 0 or ©
p(z,t=0)=86(z—zy), =—Cp10'(z—1zp). 0
at =0 0 ]
(17 15 . .
Although Eq.(16) is the exact differential equation for the
probability density of photons into the medium, it turns out 10 F
to be very difficult to solve, even approximately, in the time
domain. However, as we will shortly see, we can easily get
sensible approximations for its time-Laplace transform. 5F
Therefore, Eq(16) seems to be a convenient starting point
for continuous-wave experiment€WE’s) where solutions
appear in a natural way in the Laplace dom&h Indeed, in 0 - ' . L

this type of experiment a continuous source of photons leads CCI/LL
the system, after a transient period, to a steady state charac- s
terized by the Laplace transform pfr,t). If the system is FIG. 1. Numerical solution of the functiog?F(iq,s) (in u2/c?
absorbent with an absorptiorl ratey, then we have to re- ity as a function ofg (in us/c unity for s=us for different
place, in the Laplace transforp(r,s), the variablesby u,.  values of the anisotropy parametgrFrom top to bottomg=0g

The Laplace transform of Eq16) reads =0.5, andg=0.9.
* 2(m+1)n IIl. RESULTS

ECZE (_l)erl%m(S)r?—p(Z,S) ) .
37 =0 §z2(m+1) The analysis we have done so far is completely general
and exact. In order to proceed further with our development,
+s[s+ud(1-9)]p(z,s) we first need to specify a particular phase function and then
R obtain some results out of our exact solution that can be

=[s+ul—9g)]6(z— zo)—cﬂtl)ﬁ’(z— Z9) +0(z,9). tested in practice. We will do it in two steps.
(18

A. The Henyey-Greenstein phase function and the effective
Equation (18) is an infinite-order differential equation but absorption
with constant coefficientsTherefore we have reduced the  Unfortunately, it is not possible to obtain the exact solu-
problem to finding the roots of its characteristic polynomial, tion of the transcendental equati¢i®), and we have to se-
which in this case is lect a special form for the phase function. We choose the
Henyey-Greenstein phase function, which has been used ex-
o 3s tensively in both numerical analyses and simulatidi®. In
q°A(iq,s)= g[SﬁL Ms(1=9)], (19 this case, the coefficienig, have the simple form

Bi=PB1=(cosp)'.
where F is the continued fraction defined in E@®) and the
g’'s are the roots of the characteristic polynomial. It is Nevertheless, even with this choice, it is not possible to get a
straightforward to see that in the case of isotropic scattering;losed analytical expression for the solution of the transcen-
the transcendental equati¢f9) reduces to dental equation(19), but the numerical analysis becomes
quite simple. In Fig. 1, we show the shape of the function
(s+ ug)tani(cg/ ws) =cq. q°F(iq,s), appearing on the left-hand side of H49), for
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different values ofg=(cosé) and for real values of|. The 2
first feature we can see is thatF(iq,s) is a symmetrical .
function of g defined in the interval  s— ug,S5+ wg). This .

reflects the fact that photons move through the medium at ¢ . .
finite speed and can be directly derived from the structure of 15 . . 1
the continued fractior. On the other hand, I€ig,(s)} be . .

the set of different roots of Eq19). Note that due to the . .
symmetry ofg?#(iq,s),+q,(s) are both solutions of Eq. s 4L - . |
(19). Then forg=0, the set of solutions contains only one =~ . .

real root, while the numerical analysis also shows that for an = . .
arbitrary value ofg the set contains an infinite number of

roots whose limit value is 05 F .

1
lim qq(s) = < (s+ ). >

n—oc

This means that|(s) =(s+ ws)/C is an accumulation point 0 02 O'4u m 06 08 !
of the roots that will lead to an irregular solution associated ans

with ballistic photons. However, this irregular solution con-  g|G. 2. The effective absorption parametef in terms of the
tains terms of the order ekp(s+uJzc] that will become  apsorption parameter, (both u, and u? are in us units). Solid
negligible forz>c(s+ us) ~*. We will focus our interest on lines correspond to the diffusion approximation and symbols corre-
the first of these rootgy,(s), because the long-distance be- spond to numerical solutions of E¢19) for different values of
havior of the probability density in the steady state for theg:g=0 (circles, g=0.5 (squares g=0.9 (diamonds.

CWE is an exponential of rate,(s). Therefore if we sup-

pose that the system is absorbent with an absorptionugate produce the first moment given by E(L2). Under these
then the valueq,(s= u,) is exactly the effective absorption conditions, the differential equation satisfying E80) reads
rate uy ; that is,

t *p(z,7) ap(z,7)
M3 =CO1(S= fta). f a(t—T){p(—z-F,u,s(l—g) L dr
0 oT T
We can see from Eq19) that when the absorption is low,
the effective rate behaves as ,°p(zZ,t)
=C T, (21)
- EEre——— z
M;z Suapms(1—9) (Maﬂoﬁ—)’

corresponding to the diffusive limit. Moreover, for a strongly Where
absorbing medium we have -
A ceqi(s)

ma=ta (a—%), )= Fevali=0)]" (22)

corresponding to the ballistic limit. In Fig. 2, we plot this
effective absorbing rate for different valuesgénd the cor-
responding ones to the diffusion approximation. Observe th
the difference between both the exact one and the diffusiv
one increases whemincreases.

and the initial conditions are given by Ed.7). Note that Eq.
a(t21) is a nonlocal telegrapher’'s equation and it reproduces
8orrectly both the diffusion and the ballistic limit. In addi-
tion, Eq.(21) shows the long-distance behavior observed in
the CWE. Indeed, wheh—0 one can easily see from Eq.
(22) that a(t)~4(t), and Eq.(21) reduces to the ordinary
telegrapher’s equation with a photon speed giverch®n

In Sec. Il preceding section, we obtained the exact differthe other hand, whet—< we havea(t)~34(t), and the
ential equation fop(z,s) [cf. Eq. (18)]. Nevertheless, this telegrapher’s equation obtained from E21) asymptotically
equation is not very useful because we cannot exactly solveesults in the following diffusion equation:
an infinite-order differential equation. Therefore we need to
do approximations if we want to obtain more information ap(z,t) c? p(z,t)
about the process. Since the long-distance behavior in the ot :3,u (1-9)
steady state is governed by the first rog{s) of Eq. (19), S
we first approximate the solution by

B. Some approximations

972

which gives us the correct diffusion coefficient.
Atz z<0 The next-order approximation corresponds to taking the

p(z,8)= Be 992 7>0. (20 first two roots of Eq(19). In such a case, the solution reads

The two constants and B will be determined by the nor- - Aen97+ A2 7<0

~ z,8)= _ _ 23
malization ofp(z,s) and by the fact that Eq20) must re- P(z) B,e 1924+ Be %2092 z>0. @3
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FIG. 3. Normalized concentration profile in the steady st4#®

(in wg/c units) for w,=0.1us. Positionzis plotted inc/ ug units.
Solid lines correspond to the numerical solution of E24) and
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nzic

FIG. 4. The same as in Fig. 3, willn,= u/2.

for both directions. This last condition corresponds to the

symbols are simulation results of the continuous time random wallchoicesﬁgzﬁgz 0 and ,8(2’: 1. We also use the Henyey-
using the Henyey-Greenstein phase function. Photons start movingreenstein phase function. The normalized concentration

along thez axis in both directions with equal probabilitg=0
(diamonds$, g=0.5 (squareys g=0.9 (circles.

As before, the four constants;,A,,B;, and B, must be
determined under the conditions that E83) correctly re-
produce the first three moments given by Ed®)—(14) and
that it be properly normalized. All of this results in the fol-
lowing differential equation:

d? d?
— —0qi(s) || = —d5(s) | p(z.s)
gz dz
=a(s)d(z)+b(s)d'(z)+c(s)d"(z)+d(s)8"(2),
(24
where
_ qi(s)a3(s) R CHOLHO)
a(s)= —s b(s)=— T sy (25
2.2 2 0 2 2
o(g)= SS9 (1+ @) ORI
3ss; S S, S
ccai(s)az(s) [ B 4B9 6@)
d(s)=- 3ss, (QJF 55:S, 55,53
Or ~2 2
N CBl[Q1(5)+Q2(S)]. 27)

ss1

Again, one can show that E4) has the right ballistic

profile in the steady state is precisely the normalized solution
of Eq. (24), i.e.,

p(2)=5P(Z,5)|s= ., (28)

so we can test the validity of this second-order approxima-
tion by (numerically solving Eq.(24) with the initial condi-
tions explained above. In Figs. 3-5, we plot the concentra-
tion profile (28) using the solution of Eq(24) along with
simulations for different values @f and . As we can see

in these figures, the agreement between simulations and the
solution of Eq.(24) is very good for all values of the param-
eters, even anisotropic scattering, except for distances less
than one length of the scattering mean-free path. This is con-
sistent with the fact that we have neglected the contribution
of the roots of Eq(19) that are greater thag,(s).

10"

and diffusive limits. Therefore it seems to be quite a good
approximation for the transport process. In order to test this
approximation, we have done simulations of the normalized
concentration profile in the steady statéz), assuming that
there is a continuous source of photons at the origin, and that
the medium is absorbent with a rate,. We assume that
photons start moving along tfeaxis with equal probability

nzic

FIG. 5. The same as in Fig. 3, wifla,= us.
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IV. CONCLUSIONS ing the differential equation is better adapted to the problem
is the first step toward a more complete description of trans-

. Oln ath;iogaatp;]erguwk? ;?j\ilsorsdtg:jé?jdmtggiupnrqoElel:]ne(:nghooft?r? ort in any real problem. In order to accomplish this objec-
propag 9 y ve, we need to know the appropriate boundary conditions

tranqurt equation fc_)r the problem. We hgv_e seta succe§si\f8r the problem. This is not an easy task, and it is presently
approximation solution scheme for obtaining the marglnalunder investiga;tion '

probability density function of photons inside an infinite me-
dium. We have also obtained, in terms of a transcendental
equation, the effective absorption parameter, which turns out
to be different from that which the diffusion theory provides.  We gratefully thank Dr. George H. Weiss for his valuable

The approximation scheme can be used to solve moreomments and careful reading of the manuscript. This work
realistic problems, such as transport through slabs. A comhas been supported in part by DireatiGeneral de Investi-
parison of the theoretical predictions of our procedure withgacion Cientfica y Tecnica under Contract No. PB96-0188
simulations shows that it is a fairly good description of theand Project No. HB119-0104, and by Generalitat de Catalu-
transport process for all ranges of parameters. In fact, knowaya under Contract No. 1998 SGR-00015.
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